High visible-light photochemical activity of titania decorated on single-wall carbon nanotube aerogels
نویسندگان
چکیده
Photocatalysts are being extensively investigated to convert renewable solar energy into chemical energy but suffer from high costs or low efficiencies. We report on the development of highly visible-light photoactive composites of titania (TiO2) and single-wall carbon nanotubes (SWCNTs) that rapidly photodegrade methylene blue dyes under visible-light illumination in the absence of cocatalysts. We fabricated these freestanding porous composites of density z36 mg mL!1 (volume fraction z 0.01) by an in situ sol–gel synthesis of titania nanoparticles of diameter z9 nm within SWCNT aerogels. The SWCNT aerogels are three-dimensional porous networks of individualized SWCNTs having a density z9 mg mL!1 (volume fraction z 0.006), whose large surface area and high porosity enable substantial titania loading and unimpeded dye transport to titania. The TiO2/SWCNT aerogel composites had a surface area of 293 m g!1 and pores of diameters between 2–25 nm. X-ray photoelectron spectroscopy showed a strong bonding interaction between titania and SWCNTs (i.e., titanium–carbon and titanium–oxygen–carbon bonds), which possibly rendered these aerogel composites photoactive in visible-light with an absorption edge z2.6 eV. In contrast, titania is only active in ultraviolet-light due to its large bandgap (z3.2 eV). Further, they degraded dyes at a rate of z25 mmol g!1 h!1 with a rate constant of z0.012 min!1 under visible-light irradiation, values that are more than two times greater than those from other titania-based photocatalysts under visible or ultraviolet illumination. In comparison, titania nanoparticles alone were essentially inactive under similar test conditions. Interestingly, the rate constant for dye degradation decreased with an increase in dye concentration, but the overall rate of degradation remained nearly unchanged. Moreover, the addition of platinum cocatalysts did not improve the photocatalytic performance of the TiO2/SWCNT composites. These observations suggest that the composites efficiently separate visible-light generated electron–hole pairs and that photodegradation was limited by the availability of reactive sites on titania (the anodic reaction). We postulate that further enhancements are plausible through composite design and that our facile fabrication method can be readily adapted to create nearly any freestanding photocatalyst/SWCNT aerogel composites for use in high performance photoelectrochemical cells.
منابع مشابه
Increasing the hydrogen storage capacity of single-walled carbon nanotube (SWNT) through facile impregnation by TiO2, ZrO2 and ZnO nanocatalysts
Various nanocomposites of TiO2, ZnO and ZrO2 decorated single wall Carbon nanotubes (SWNTs) were fabricated by facile and template free continuous ultrasonication/stirring of virgin metal oxide nanopowders and SWNTs in ethanol under UV-light illumination. The TEM micrographs showed that nanoparticles (NPs) were uniformly dispersed and bonded on the surface of SWNTs. The results of XRD as well a...
متن کاملSynthesis and Characterization of Anatase-coated Multiwall Carbon Nanotube for Improvement of Photocatalytic Activity
Sol-gel technique was used to coat multiwall carbon nanotubes (MWCNTs) with anatase titania to increasing the surface area and improve the photocatalytic activity of TiO2. Room temperature ballistic conduct of MWCNT combined with semiconducting behavior of anatase brought about a photocatalytic improvement of ~37 % with respect to the highest methyl orange decolorization flair. For characteriza...
متن کاملA novel route for synthesis of UV-resistant hydrophobic titania-containing silica aerogels by using potassium titanate as precursor.
Developing a novel and facile way to synthesize composite aerogels plays an important role in the applications of aerogels. UV-resistant hydrophobic titania-containing silica aerogels are prepared for the first time using potassium titanate as precursor by a modified ambient pressure drying method. The well established silica-titania networks, which can be tuned from 10 to 30 nm by adjusting th...
متن کاملFabrication by AC Deposition and Antimicrobial Properties of Pyramidal-Shaped Cu2O-TiO2 Heterostructures
Nanoparticulate surfaces possessing antimicrobial and fungicidal properties under visible light illumination have found wide applications in a number of fields. In this study, titania nanotubes, as well as titania compact films were designed with pure Cu2O crystals in a mildly acidic copper acetate solution using a simple alternating current (AC) deposition approach. In this way, the thermally ...
متن کاملPreparation of Diaminedicarboxyplatinum (II) Functionalized Single-Wall Carbon Nanotube via Bingel Reaction As a Novel Cytotoxic Agent
Carbon nanotubes have unique properties like high stability, high surface to mass ratio and so on which make them suitable for medicinal purpose applications. Treatment of cancer by organoplatinum agents like Cisplatin has become unresponsive in most cases due to low distribution of drug in biological fluids, inability of drug to cross cellular membranes and low stability in biological environm...
متن کامل